CBD Oil Half Life

CBDISTILLERY

Buy CBD Oil Online

Background: Cannabidiol is being pursued as a therapeutic treatment for multiple conditions, usually by oral delivery. Animal studies suggest oral bioavailability is low, but literature in humans is not sufficient. The aim of this review was to collate published data in this area. Methods: A systematic search of PubMed and EMBASE (including MEDLINE) was conducted to retrieve all articles reporting pharmacokinetic data of CBD in humans. Results: Of 792 articles retireved, 24 included pharmacokinetic parameters in humans. The half-life of cannabidiol was reported between 1.4-10.9 hours after oromucosal spray, 2-5 days after chronic oral administration, 24 hours after i.v., and 31 hours after smoking. Bioavailability following smoking was 31% however no other studies attempted to report the absolute bioavailability of CBD following other routes in humans, despite i.v formulations being available. The area-under-the-curve and Cmax increase in dose-dependent manners and are reached quicker following smoking/inhalation compared to oral/oromucosal routes. Cmax is increased during fed states and in lipid formulations. Tmax is reached between 0-4 hours. Conclusions: This review highlights the paucity in data and some discrepancy in the pharmacokinetics of cannabidiol, despite its widespread use in humans. Analysis and understanding of properties such as bioavailability and half-life is critical to future therapeutic success, and robust data from a variety of formulations is required. The amount of time CBD remains in the body depends on how much you took, how often you use it, and what form of CBD you’re using.

A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans

Background: Cannabidiol is being pursued as a therapeutic treatment for multiple conditions, usually by oral delivery. Animal studies suggest oral bioavailability is low, but literature in humans is not sufficient. The aim of this review was to collate published data in this area.

Methods: A systematic search of PubMed and EMBASE (including MEDLINE) was conducted to retrieve all articles reporting pharmacokinetic data of CBD in humans.

Results: Of 792 articles retireved, 24 included pharmacokinetic parameters in humans. The half-life of cannabidiol was reported between 1.4 and 10.9 h after oromucosal spray, 2–5 days after chronic oral administration, 24 h after i.v., and 31 h after smoking. Bioavailability following smoking was 31% however no other studies attempted to report the absolute bioavailability of CBD following other routes in humans, despite i.v formulations being available. The area-under-the-curve and Cmax increase in dose-dependent manners and are reached quicker following smoking/inhalation compared to oral/oromucosal routes. Cmax is increased during fed states and in lipid formulations. Tmax is reached between 0 and 4 h.

Conclusions: This review highlights the paucity in data and some discrepancy in the pharmacokinetics of cannabidiol, despite its widespread use in humans. Analysis and understanding of properties such as bioavailability and half-life is critical to future therapeutic success, and robust data from a variety of formulations is required.

Introduction

The Cannabis sativa plant contains more than a hundred phytocannabinoid compounds, including the non-psychotomimetic compound cannabidiol (CBD) (Izzo et al., 2009). CBD has attracted significant interest due to its anti-inflammatory, anti-oxidative and anti-necrotic protective effects, as well as displaying a favorable safety and tolerability profile in humans (Bergamaschi et al., 2011), making it a promising candidate in many therapeutic avenues including epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. GW pharmaceuticals have developed an oral solution of pure CBD (Epidiolex ® ) for the treatment of severe, orphan, early-onset, treatment-resistant epilepsy syndromes, showing significant reductions in seizure frequency compared to placebo in several trials (Devinsky et al., 2017, 2018a; Thiele et al., 2018). Epidiolex ® has recently received US Food and Drug Administration (FDA) approval (GW Pharmaceuticals, 2018). CBD is also being pursued in clinical trials in Parkinson’s disease, Crohn’s disease, society anxiety disorder, and schizophrenia (Crippa et al., 2011; Leweke et al., 2012; Chagas et al., 2014; Naftali et al., 2017), showing promise in these areas. Additionally, CBD is widely used as a popular food supplement in a variety of formats for a range of complaints. It is estimated that the CBD market will grow to $2.1 billion in the US market in consumer sales by 2020 (Hemp Business, 2017).

From previous investigations including animal studies, the oral bioavailability of CBD has been shown to be very low (13–19%) (Mechoulam et al., 2002). It undergoes extensive first pass metabolism and its metabolites are mostly excreted via the kidneys (Huestis, 2007). Plasma and brain concentrations are dose-dependent in animals, and bioavailability is increased with various lipid formulations (Zgair et al., 2016). However, despite the breadth of use of CBD in humans, there is little data on its pharmacokinetics (PK). Analysis and understanding of the PK properties of CBD is critical to its future use as a therapeutic compound in a wide range of clinical settings, particularly regarding dosing regimens and routes of administration. Therefore, the aim of this systematic review was to collate and analyse all available CBD PK data recorded in humans and to highlight gaps in the literature.

Methods

Search Strategy

The systematic review was carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Moher et al., 2009). A systematic search of PubMed and EMBASE (including MEDLINE) was conducted to retrieve all articles reporting pharmacokinetic data of CBD in humans. Search terms included: CBD, cannabidiol, Epidiolex, pharmacokinetics, Cmax, plasma concentrations, plasma levels, half-life, peak concentrations, absorption, bioavailability, AUC, Tmax, Cmin, and apparent volume of distribution. No restrictions were applied to type of study, publication year, or language. The searches were carried out by 14 March 2018 by two independent researchers.

Eligibility Criteria

The titles and abstracts of retrieved studies were examined by two independent researchers, and inappropriate articles were rejected. Inclusion criteria were as follows: an original, peer-reviewed paper that involved administration of CBD to humans, and included at least one pharmacokinetic measurement as listed in the search strategy.

Data Acquisition

The included articles were analyzed, and the following data extracted: sample size, gender, administration route of CBD, source of CBD, dose of CBD, and any pharmacokinetic details. Where available, plasma mean or median Cmax (ng/mL) were plotted against CBD dose (mg). Similarly, mean or median Tmax and range, and mean or median area under the curve (AUC0−t) and SD were plotted against CBD dose (mg). The source/supplier of the CBD was also recorded. No further statistical analysis was possible due to sparsity of data and heterogeneity of populations used. All studies were assessed for quality using an amended version of the National Institute for Health (NIH), National Heart, Lung and Blood Institute, Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group (National Institute for Health, 2014). A sample size of ≤ 10 was considered poor, between 11 and 19 was considered fair, and ≥20 was considered good (Ogungbenro et al., 2006).

Definitions of PK Parameters

Tmax: Time to the maximum measured plasma concentration.

Cmax: Maximum measured plasma concentration over the time span specified.

t1/2: Final time taken for the plasma concentration to be reduced by half.

AUC0−t: The area under the plasma concentration vs. time curve, from time zero to “t.”

AUC0−inf: The area under the plasma concentration vs. time curve from zero to t calculated as AUC0−t plus the extrapolated amount from time t to infinity.

Kel: The first-order final elimination rate constant.

Results

In total, 792 records were retrieved from the database searching, 24 of which met the eligibility criteria (Figure 1). Table 1 summarizes each included study. Routes of administration included intravenous (i.v.) (n = 1), oromucosal spray (n = 21), oral capsules (n = 13), oral drops (n = 2), oral solutions (n = 1), nebuliser (n = 1), aerosol (n = 1), vaporization (n = 1), and smoking (n = 8). CBD was administered on its own in 9 publications, and in combination with THC or within a cannabis extract in the remainder. One study was conducted in children with Dravet syndrome, while the remainder were conducted in healthy adult volunteers (Devinsky et al., 2018b). Overall, the included studies were of good quality (Supplementary Table 1). However, many studies had small sample sizes. Additionally, not all studies included both males and females, and frequent cannabis smokers were included in a number of studies. Thus, interpretation and extrapolation of these results should be done with caution.

Figure 1. Flow chart for study retrieval and selection.

Table 1. Human studies reporting pharmacokinetic (PK) parameters for cannabidiol (CBD).

Cmax, Tmax, and Area Under the Curve

Within the 25 included studies, Cmax was reported on 58 occasions (for example within different volunteer groups or doses in a single study), Tmax on 56 occasions and area under the curve (AUC0−t) on 45 occasions. These data from plasma/blood are presented in Figures 2A–C. The AUC0−t and Cmax of CBD is dose-dependent, and Tmax occurs between 0 and 5 h, but does not appear to be dose-dependent.

Figure 2. (A) Mean or median Tmax (h) and range against CBD dose (mg) (B) mean or median area under the curve (AUC0-t) (h × ng/mL) and SD against CBD dose (mg) and (C) plasma mean or median concentration max (Cmax; ng/mL) against CBD dose (mg). It was not possible to present error bars for Cmax as SD and SEM were both reported in the data. IV, intravenous; SD, standard deviation; SEM, standard error of the mean.

Oromucosal Drops/Spray

A number of trials in humans were conducted by Guy and colleagues to explore administration route efficiency of sprays, an aerosol, and a nebuliser containing CBD or CBD and THC (CBD dose 10 or 20 mg) (Guy and Flint, 2004; Guy and Robson, 2004a,b). Oromucosal spray, either buccal, sublingual, or oropharyngeal administration, resulted in mean Cmax between 2.5 and 3.3 ng/mL and mean Tmax between 1.64 and 4.2 h. Sublingual drops resulted in similar Cmax of 2.05 and 2.58 ng/mL and Tmax of 2.17 and 1.67 h, respectively. Other oromucosal single dose studies reported Cmax and Tmax values within similar ranges (Karschner et al., 2011; Atsmon et al., 2017b).

See also  Gw Pharmaceuticals CBD Oil For Sale

Minimal evidence of plasma accumulation has been reported by chronic dosing studies over 5–9 days (Sellers et al., 2013; Stott et al., 2013a). Cmax appears to be dose-dependent. A dose of 20 mg/day resulted in a mean Cmax of 1.5 ng/mL and mean AUC0−t of 6.1 h × ng/mL while 60 mg/day equated to a mean Cmax of 4.8 ng/mL and AUC0−t was 38.9 h × ng/mL (Sellers et al., 2013). In another study, Cmax increased dose-dependently from 0.4 to 1.2 and 2.2 ng/mL following 5, 10, and 20 mg single doses, respectively, and from 0.5 to 1.1 and 3.2 ng/mL, respectively following chronic dosing over 9 consecutive days (Stott et al., 2013a). There was a significant increase in time-dependent exposure during the chronic treatment. Mean AUC0−t for the single doses were 0.8, 4.5, 9.9, and 2.5, 6.7, and 20.3 for the chronic dosing schedule, respectively. Tmax does not appear to be dose-dependent, nor affected by acute or chronic dosing schedules.

Stott et al. reported an increase in CBD bioavailability under fed vs. fasted states in 12 men after a single 10 mg dose of CBD administered through an oromucosal spray which also contained THC (Stott et al., 2013a,b). Mean AUC and Cmax were 5- and 3-fold higher during fed conditions compared to fasted (AUC0−t 23.1 vs. 4.5; Cmax 3.7 vs. 1.2 ng/mL). Tmax was also delayed under the fed state (4.0 vs. 1.4 h).

In children, Devinsky et al. reported mean AUC as 70, 241, 722, and 963 h × ng/mL in groups receiving 2.5, 5, 10, and 20 mg/Kg/day of CBD in oral solution (Devinsky et al., 2018b).

Oral Intake

Cmax and AUC following oral administration also appears to be dose dependent. A dose of 10 mg CBD resulted in mean Cmax of 2.47 ng/mL at 1.27 h, and a dose of 400 or 800 mg co-administered with i.v. fentanyl (a highly potent opioid) to examine its safety resulted in a mean Cmax of 181 ng/mL (at 3.0 h) and 114 ng/mL (at 1.5 h) for 400 mg, and 221 ng/mL (at 3.0 h) and 157 ng/mL (at 4.0 h) for 800 mg, in 2 sessions, respectively (Guy and Robson, 2004b; Manini et al., 2015). A dose of 800 mg oral CBD in a study involving 8 male and female cannabis smokers, reported a mean Cmax of 77.9 ng/mL and mean Tmax of 3.0 h (Haney et al., 2016). Although, an increase in dose corresponds with an increase in Cmax, the Cmax between the higher doses of CBD does not greatly differ, suggesting a saturation effect (e.g., between 400 and 800 mg).

One hour after oral capsule administration containing 5.4 mg CBD in males and females, mean Cmax was reported as 0.93 ng/mL (higher for female participants than male) (Nadulski et al., 2005a). A subset (n = 12) consumed a standard breakfast meal 1 h after the capsules, which slightly increased mean Cmax to 1.13 ng/mL. CBD remained detectable for 3–4 h after administration (Nadulski et al., 2005b).

Cherniakov et al. examined the pharmacokinetic differences between an oromucosal spray and an oral capsule with piperine pro-nanolipospheres (PNL) (both 10 mg CBD) in 9 men. The piperine-PNL oral formulation had a 4-fold increase in Cmax (2.1 ng/mL vs. 0.5 ng/mL), and a 2.2-fold increase in AUC0−t (6.9 vs. 3.1 h × ng/mL), while Tmax was decreased (1.0 vs. 3.0 h) compared to the oromucosal spray (Cherniakov et al., 2017a). This group further developed self-emulsifying formulations and reported again an increased bioavailability and increased Cmax within a shorter time compared to a reference spray (Atsmon et al., 2017a,b).

Intravenous Administration

The highest plasma concentrations of CBD were reported by Ohlsson et al. following i.v. administration of 20 mg of deuterium-labeled CBD. Mean plasma CBD concentrations were reported at 686 ng/mL (3 min post-administration), which dropped to 48 ng/mL at 1 h.

Controlled Smoking and Inhalation

After smoking a cigarette containing 19.2 mg of deuterium-labeled CBD, highest plasma concentrations were reported as 110 ng/mL, 3 min post dose, which dropped to 10.2 ng/ml 1 h later (Ohlsson et al., 1986). Average bioavailability by the smoked route was 31% (Ohlsson et al., 1986). A nebuliser resulted in a Cmax of 9.49 ng/mL which occurred at 0.6 h, whereas aerosol administration produced Cmax (2.6 ng/mL) at 2.35 h (Guy and Flint, 2004). In 10 male and female usual, infrequent cannabis smokers, Cmax was 2.0 ng/mL at 0.25 h after smoking a cigarette containing 2 mg of CBD (Schwope et al., 2011). CBD was detected in 60% of whole blood samples and in 80% of plasma samples at observed Cmax, and no longer detected after 1.0 h. A study in 14 male and female cannabis smokers reported 15.4% detection in frequent smokers with no CBD detected in occasional smokers in whole blood analysis (Desrosiers et al., 2014). In plasma however, there was a 53.8 and 9.1% detection in the frequent and occasional groups, with corresponding Cmax of 1.1 ng/mL in the frequent group, and below limits of detection in the occasional group.

Half-Life

The mean half-life (t1/2) of CBD was reported as 1.1 and 2.4 h following nebuliser and aerosol administration (20 mg) (Guy and Flint, 2004), 1.09 and 1.97 h following single oral administration (10 and 20 mg) (Guy and Flint, 2004; Guy and Robson, 2004b), 2.95 and 3.21 h following 10 mg oral lipid capsules (Atsmon et al., 2017a,b), between 1.44 and 10.86 h after oromucosal spray administration (5–20 mg) (Guy and Robson, 2004b; Sellers et al., 2013; Stott et al., 2013a,b; Atsmon et al., 2017b), 24 h after i.v. infusion, 31 h after smoking (Ohlsson et al., 1986), and 2–5 days after chronic oral administration (Consroe et al., 1991).

Elimination Rate

Mean elimination rate constant (Kel [1/h]) has been reported as 0.148 in fasted state, and 0.155 in fed state after 10 mg CBD was administered in an oromucosal spray also containing THC (Stott et al., 2013a,b). After single doses of 5 and 20 mg CBD, mean Kel (1/h) was reported as 0.173 and 0.123 (Stott et al., 2013a). Following 20 mg CBD administration through a nebuliser and pressurized aerosol, mean Kel was reported as 0.98 and 0.43, respectively, while 20 mg CBD administered as sublingual drops was reported as 0.37 (Guy and Flint, 2004).

Plasma Clearance

Plasma apparent clearance, CL/F (L/h) has been reported to range from 2,546 to 4,741 in a fasted stated following 10 mg CBD administered via oromucosal spray (Stott et al., 2013a,c). This value decreases to 533 following the same concentration in a fed state (Stott et al., 2013b). A plasma apparent clearance of 3,252 and 3,783 was reported following 5 and 20 mg single doses of CBD via oromucosal spray (Stott et al., 2013a). Ohlsson et al. reported plasma apparent clearance as 74.4 L/h following i.v. injection (Ohlsson et al., 1986).

Volume of Distribution

Mean apparent volume of distribution (V/F [L]) was reported as 2,520 L following i.v. administration (Ohlsson et al., 1986). Following single acute doses through oromucosal spray administration, apparent volume of distribution was reported as 26,298, 31,994, and 28,312 L (Stott et al., 2013a).

Discussion

The aim of this study was to review and analyse all available PK data on CBD in humans. Only 8 publications reported PK parameters after administering CBD on its own, and the others were in combination with THC/cannabis. Only 1 study reported the bioavailability of CBD in humans (31% following smoking). From the analysis of these papers, the following observations were made; peak plasma concentrations and area under the curve (AUC) are dose-dependent and show minimal accumulation; Cmax is increased and reached faster following i.v., smoking or inhalation; Cmax is increased and reached faster after oral administration in a fed state or in a pro-nanoliposphere formulation; Tmax does not appear to be dose-dependent; and half-life depends on dose and route of administration. Overall, considerable variation was observed between studies, although they were very heterogeneous, and further work is warranted.

Human studies administering CBD showed that the AUC0−t and Cmax are dose-dependent, and Tmax mostly occurred between 1 and 4 h. Animal studies in piglets, mice, and rats also all demonstrate a dose-dependent relationship between CBD and both plasma and brain concentrations (Long et al., 2012; Hammell et al., 2016; Garberg et al., 2017), suggesting that human brain concentrations will also be dose-dependent. Ten publications in this review reported the half-life of CBD which ranged from 1 h to 5 days and varies depending on the dose and route of administration. Very limited data was available for detailed analysis on the elimination rate, apparent clearance or distribution of CBD in humans.

Plasma levels of CBD were increased when CBD was administered with food or in a fed state, or when a meal is consumed post-administration. Oral capsules with piperine pro-nanolipospheres also increased AUC and Cmax. This is also demonstrated in animal studies; co-administration of lipids with oral CBD increased systemic availability by almost 3-fold in rats (Zgair et al., 2016) and a pro-nanoliposphere formulation increased oral bioavailability by about 6-fold (Cherniakov et al., 2017b). As CBD is a highly lipophilic molecule, it is logical that CBD may dissolve in the fat content of food, increasing its solubility, and absorption and therefore bioavailability as demonstrated by numerous pharmacological drugs (Winter et al., 2013). Thus, it may be advisable to administer CBD orally in a fed state to allow for optimal absorption.

Only one study used intravenous administration of CBD and reported PK details, which could be a beneficial route of administration in some acute indications. Results from other routes such as rectal, transdermal, or intraperitoneal have also not been published in humans, although transdermal CBD gel and topical creams have been demonstrated to be successful in animal studies (Giacoppo et al., 2015; Hammell et al., 2016). Interestingly, intraperitoneal (i.p.) injection of CBD corresponded to higher plasma and brain concentrations than oral administration in mice, however in rats, similar concentrations were observed for both administration routes, and brain concentrations were in fact higher following oral compared to i.p. route (Deiana et al., 2012). No published data exists on the tissue distribution of CBD in humans. Although plasma levels of CBD do not show accumulation with repeated dosing, it is possible that there may be tissue accumulation.

See also  Fx CBD Oil

Only one study in this review was conducted in children (n = 34) (Devinsky et al., 2018b). Children (4–10 years) with Dravet syndrome were administered an oral solution of CBD and AUC was reported to increase dose-dependently. It is important to emphasize the statement that children are not small adults, and there are many differences in their pharmacokinetic and pharmacodynamic profiles. Absorption, excretion, metabolism, and plasma protein binding are generally reduced in children compared to adults, and apparent volume of distribution is generally increased (Fernandez et al., 2011). These parameters need to be explored fully for CBD in order to understand and advise dose adjustments.

Within the adult studies, inter- and intra-subject variability was observed in studies, and it remains to be seen whether i.v. and other routes of administration that by-pass initial metabolism will alleviate this issue. Interestingly, although each of the subject’s weight was taken into account, none of the studies addressed subject fat content as a factor in their exclusion criteria; as muscle can weigh more than the same proportion of fat. It is well-known that cannabinoids are highly lipophilic compounds and accumulate in fatty tissue which can then be released gradually (Gunasekaran et al., 2009). It may be of benefit in future study to either put in place more stringent exclusion criteria and measure subject fat content or assess the possible accumulation of CBD in fatty tissue. Differences in metabolism, distribution and accumulation in fat, and in biliary and renal elimination may be responsible for prolonged elimination half-life and variable pharmacokinetic outcomes. CBD use is widespread and has been recommended for use by the FDA in childhood-onset epilepsy. CBD also displays therapeutic promise in other disorders such as schizophrenia and post-traumatic stress disorder. If we are to understand the actions of CBD in those disorders and increase the success rate for treatment, these groups of patients and their distinct characteristics must be assessed as they may not be comparable to a healthy volunteer population.

A systematic review in 2014 concluded that CBD generally has a low risk of clinically significant drug-interactions (Stout and Cimino, 2014). A few studies in the current review included examination of drug-drug interactions with CBD. GW Pharmaceuticals performed a clinical trial investigating the pharmacokinetic interaction between CBD/THC spray (sativex) and rifampicin (cytochrome P450 inducer), ketoconazole, and omeprazole (cytochrome P450 inhibitors) (Stott et al., 2013c). Authors concluded overall that CBD in combination with the drugs were well-tolerated, but consideration should be noted when co-administering with other drugs using the CYP3A4 pathway. Caution is also advised with concomitant use of CBD and substrates of UDP-glucuronosyltransferases UGT1A9 and UGT2B7, and other drugs metabolized by the CYP2C19 enzyme (Al Saabi et al., 2013; Jiang et al., 2013). Manini et al. co-administered CBD with i.v. fentanyl (a high potency opioid) which was reported as safe and well-tolerated (Manini et al., 2015). In a number of trials with CBD in children with severe epilepsy, clobazam concentrations increased when CBD was co-administered and dosage of clobazam had to be reduced in some patients in one study (Geffrey et al., 2015; Devinsky et al., 2018b). Gaston and colleagues performed a safety study in adults and children in which CBD was administered with commonly-used anti-epileptic drugs (AEDs) (Gaston et al., 2017). Most changes in AED concentrations were within acceptable ranges but abnormal liver function tests were reported in those taking valproate and authors emphasized the importance of continued monitoring of AED concentrations and liver function during treatment with CBD.

Limitations of this review should be acknowledged. Different population types including healthy and patient populations and cannabis naïve or not were all grouped together which may impede generalizability. The proportions of men and women in each study were also not uniform, and it is still being elucidated whether men and women have distinct pharmacokinetic profiles with regards to cannabinoids (Fattore and Fratta, 2010). One study suggested that the PK of CBD was different in their female volunteers (Nadulski et al., 2005a). It should also be mentioned that CBD is currently not an approved product with a pharmacopeia entry so using different sources of CBD that are subject to different polymeric forms, different particle sizes, and different purities may also affect the PK profiles observed. It is important for future work that researchers record the source of the CBD material used so that results have the highest chance of being replicated. Despite a thorough search of the two databases chosen, the addition of more databases may have widened the search to increase the number of results and hence improve the reliability and validity of the findings. However, the review was carried out by two independent reviewers, and searches generated were analyzed separately and then compared.

In conclusion, this review demonstrates the lack of research in this area, particularly in routes of administration other than oral. An absence of studies has led to failure in addressing the bioavailability of CBD despite intravenous formulations being available. This is of critical importance due to the popularity of CBD products and will help interpret other PK values. Standardized and robust formulations of CBD and their PK data are required for both genders, with consideration of other factors such as adiposity, genetic factors that might influence absorption and metabolism, and the effects of disease states.

Author Contributions

SM, SO, and AY: substantial contributions to the conception or design of the work. SM: writing of the manuscript. SM and NS: database searching and data extraction. All authors: the analysis and interpretation of data for the work; drafting the work or revising it critically for important intellectual content; final approval of the version to be published; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding

This work was supported by the Biotechnology and Biological Sciences Research Council [Grant number BB/M008770/1].

Conflict of Interest Statement

AY was employed by company Artelo Biosciences.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

How Long Does CBD Stay In Your System

The amount of time CBD remains in the body depends on how much you took, how often you use it, and what form of CBD you’re using.

Article By

Regardless if you’re a long-term CBD user or you have just begun your CBD journey, you may be wondering — “how long does CBD stay in the body?”

Different methods of CBD administration produce different results. You may feel the effects of CBD quickly after inhalation. But, how long does CBD stick around after the effects wear off?

If you want to take a short break, increase your dose, switch from one method of consumption to another, or are simply curious about what happens to CBD after it enters the body — we provide you with all the answers.

In this article, we’ll cover how CBD is absorbed, metabolized, and excreted. We’ll compare long term CBD use with short term and how this can affect the amount of time CBD remains in your body after the effects have worn off.

Table of Contents
  • So, How Long Does CBD Oil Stay in Your System?
  • What Does CBD Half-Life Mean?

So, How Long Does CBD Oil Stay in Your System?

We need more research to get a definitive answer to the amount of time it takes CBD to leave your body. But here’s what we know so far:

CBD won’t be in your system for longer than 7 days after your last use — unless you’re a frequent user of CBD (more than 10 mg per day for several weeks).

In this case, CBD may linger for up to two more weeks depending on how often you use it.

What the Research Says

In a study published in Pharmacology, Biochemistry, and Behavior, 14 patients with Huntington’s disease were given an extremely high dosage of oral CBD (10 mg/kg/day — about 700 mg/day) for six weeks. The study found that the levels of CBD dropped to an average of 1.5 ng/ml one week after discontinuing CBD. Cannabidiol levels were virtually undetectable after about a week [1].

The study found the elimination half-life of CBD was about 2-5 days. There was no difference between genders for the half-life of CBD. This half-life is significantly shorter for people who don’t use CBD regularly.

What Does CBD Half-Life Mean?

The elimination half-life of a drug or compound is a common measurement in medicine to determine the time it takes for 50% of the starting dose of a compound to leave the body.

Each half-life results in proportionally less elimination.

Here’s how the half-life of CBD works — assuming the half-life of 10 mg CBD is 3 hours [2]:

  1. About an hour after taking, CBD reaches peak concentration of 10 mg
  2. After the first half-life (3 hours) there’s only 5 mg of CBD left in the body
  3. After the second half-life (6 hours) only 2.5 mg of CBD is left in the body
  4. After the third half-life (9 hours) only 1.25 mg of CBD is left in the body
  5. After the fourth half-life (12 hours) 0.62 mg of CBD is left in the body
Amount of CBD Left in the System Over Time

The half-life changes depending on the mode of administration and the amount of time CBD is used. Smoking CBD has a 31-hour half-life, and using oral CBD for long periods of time increases the half-life to 2-5 days [2].

See also  Green Lobster CBD Gummies Cost

Estimated CBD Concentrations After 10 mg Dose

Time After Dose Oral CBD (Single Dose) Oral CBD (Long-Term Use) Inhaled CBD
3 Hours 5 mg 10 mg 10 mg
24 Hours 0.3 mg 8 mg 6 mg
3 Days 0 mg 5 mg 2.3 mg
1 Week 0 mg 2.3 mg 0.3 mg

The bottom line is that single-use CBD will be gone from the system in about a day, while regular users of CBD and those who smoke or vape to get their CBD may need to wait a week or longer for the CBD to leave the system completely.

What Happens When CBD Is Consumed at a Much Lower Dose?

As you might imagine, lower doses of CBD won’t stick around in the bloodstream as long as high doses.

A study published in Therapeutic Drug Monitoring found that 1.35 mg of CBD and 2.5 mg of THC were only detectable in the blood for about 6 hours after ingestion [3].

It’s important to keep in mind that the seven-day time frame can vary from person to person. The time it takes for CBD to leave your system depends on several factors, including:

  1. Your individual metabolism
  2. The method of consumption
  3. How often you use CBD
  4. The dose of CBD you took
  5. Your age (older people metabolize compounds slower)
  6. Other medications

How Does The Body Process CBD?

The elimination of CBD directly revolves around how CBD is processed by the body.

This can change depending on the form of CBD you use:

1. Oral Consumption (Swallowed)

What happens in the body when CBD is taken orally?

If administered orally, CBD has low bioavailability of around 13-19%. The bioavailability of a drug (in this case CBD) is the amount of CBD that enters the circulation to produce an active effect [2].

To better understand the bioavailability of swallowed CBD, let’s compare it with an intravenous dose (directly into the vein) of CBD. When you take CBD or any other drug directly in the vein, the bioavailability of the drug is assumed to be 100%. This is because the drug is injected directly into the systemic circulation.

Things work differently in the body when you take a CBD capsule through the mouth. The capsule material travels through the organs and gets processed in the gut and the liver before reaching the systemic circulation.

The metabolic process of CBD and other drugs that get broken down by gut and/or liver enzymes is known as the “first-pass” metabolism.

The low absorption of orally administered CBD has been largely attributed to the first-pass metabolism where CBD gets processed by the gut and the liver.

According to several studies, CBD goes through the CYP450 enzyme system in the liver — the key pathway for drug metabolism [4]. This is where CBD is inactivated and prepared to be eliminated from the body via the kidneys.

There are roughly 100 different metabolites of CBD discovered in various animal species. The major human CBD metabolites are derivatives of CBD-7-oic acid (7-COOH-CBD) [5].

There’s an exception to this metabolic pathway — molecules absorbed into the lymphatic system or distal rectum can bypass the liver.

The lymphatic system plays a role in the process of absorbing fats and fat-soluble nutrients. Cannabidiol as a highly lipophilic compound — a compound that has the ability to dissolve or combine with lipids or fats — can be transported by the lymphatic system.

The lymphatic system has a special membrane in the small intestine that takes up most of the absorbed fats from the gastrointestinal tract. The absorbed fats are delivered by the lymph fluid directly into the venous blood circulation [6].

Furthermore, studies show that when CBD is ingested together with lipids, it is better absorbed into the lymphatic system. So, it is advisable to take your CBD after a high-fat meal.

This means that CBD oil skips the first-pass metabolism in the liver. So, how does it get metabolized?

In the intestines, CBD gets metabolized by the cytochrome P450 enzyme system, more specifically by the CYP3A4 isoenzyme, which accounts for nearly 70% of the total CYP450 in the intestine and 60% in the liver. The extensive metabolism by this enzyme in the intestines is what causes the poor bioavailability of many drugs [6].

The lymphatic metabolic transport of CBD is important for several reasons, including:

Higher CBD levels compared to plasma.

Plasma is the largest component of human blood and contains water, enzymes, salts, antibodies, and other proteins. When a drug reaches the plasma, it needs to be present in a minimum concentration to produce effects, which can be hard if the drug has low bioavailability rates.

According to an animal study published in Scientific Reports, if taken together with lipids CBD has a higher chance to follow the lymphatic transport. The study found that the CBD concentrations in the lymph were 250-fold higher than in plasma. This means that if taken with a high-fat meal, the oral administration of CBD is more effective.

More effective in regulating and normalizing the immune system.

When taking CBD through the mouth after a high-fat meal, the absorption of CBD in the intestinal lymphatic system is much higher and shows potential for the treatment of autoimmune diseases [7].

(Source: Scientific Reports)

Picture 1: Distribution of CBD and THC to lymph nodes. Orally administered CBD and THC in formulations with and without lipids.

2. Smoking CBD

Inhaling CBD has been shown to have rapid absorption rates because the lungs transfer CBD directly into the bloodstream. The compound reaches the blood within seconds, transferred by the network of capillaries.

A fraction of CBD converts to 7-carboxy-cannabidiol (inactive CBD) and is further metabolized to 7-carboxy-cannabidiol-glucuronide. The rest gets excreted in the urine. When using this method of consumption, CBD is rapidly absorbed within a few minutes after use, but that also means that the effects of CBD are short-lasting.

According to a 2018 review, three minutes after smoking a cigarette with 19.2 mg of CBD, the highest plasma concentrations noticed were 110 ng/ml. After an hour of initial administration, the CBD concentrations dropped to 10.2 mg/ml.

The average bioavailability of the smoke route is 31%, which means that, if inhaled, CBD tends to get absorbed into the bloodstream at a higher percentage than when taken through the mouth. But, inhaled CBD also clears up faster [2].

3. Sublingual Consumption

With sublingual consumption, CBD is placed under the tongue and transferred into the bloodstream via the mucous membranes and capillaries in the mouth — effectively bypassing the digestive system and the liver.

Therefore sublingual administration will follow a similar path of metabolism and excretion to inhaled or smoked CBD.

4. Topical Application

During topical application, CBD lotions, creams, and other products are applied directly to the skin.

Topical application is best for localized symptoms, such as local inflammation and pain caused by arthritis. Strictly topical application of CBD works locally — the applied CBD product never reaches the bloodstream.

Topical CBD has an effect on human sebocytes — cells that make up the sebaceous gland, which produces an oily secretion that keeps the skin flexible, also known as sebum [7]. This also makes CBD a great additional ingredient for skincare products.

When applied topically, it is expected for CBD to enter the skin via the transfollicular route and accumulate in the sebaceous gland. This means that CBD can enter through the hair follicles into the sebaceous gland to achieve a local effect [8].

Part of the topical administration is the transdermal application where CBD is administered into the skin but is absorbed by the skin to reach the systemic circulation.

How Long Does CBD Stay in the Urine?

Research on how long CBD is detectable in urine is scarce. In a 2016 study, researchers from Pacific Toxicology Laboratories in Chatsworth, California, administered different cannabis products rich in CBD to a controlled group of 15 participants [9].

After two hours of administration, 14 out of 15 participants tested positive for CBD and THC metabolites. The researchers followed one participant after the last day of administration to find out that CBD was no longer detectable in the participant’s urine after only 24 hours.

Does CBD Interact With Other Drugs?

Yes, CBD may interact with other drugs — which may speed up, or prolong the time it takes to excrete CBD from the body.

The very first pharmacological effect of CBD ever observed was related to drug interaction. CBD is both a substrate and an inhibitor of CYP450 enzymes, so it could interfere with the metabolism of other drugs.

One study examined the potential drug interactions between a THC/CBD oromucosal spray and CYP450 inducers and inhibitors in various dose regimens.

The study done on healthy male subjects showed that inducers of CYP3A4, an enzyme involved in the metabolism of CBD significantly reduced the peak plasma concentration of CBD. On the other hand, a CYP3A4 inhibitor nearly doubled the peak plasma concentration of CBD [5].

The Bottom Line: How Long Does CBD Last In Your System?

Single-use CBD doesn’t stay in your system for longer than a week — even if taken in the highest dose.

However, with long-term use, CBD may take a week or more to completely clear the body. This is primarily due to the fact that CBD concentrations build up over time in the bloodstream and fat storage if it’s not completely cleared after each use.

The amount of CBD that stays in your system after a dose depends on several factors, including the method of consumption, dosage, and frequency of use, and the use of other medications.

How useful was this post?

Click on a star to rate it!

Average rating 4 / 5. Vote count: 1

No votes so far! Be the first to rate this post.