Categories
BLOG

strain relaxation

Strain relaxation

a Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102, India
E-mail: [email protected], [email protected]

Abstract

For the first time, high optical quality InN films were grown on a sapphire substrate using the atmospheric chemical vapour deposition technique in the temperature range of 560–650 °C. The self-catalytic approach was adopted to overcome the nucleation barrier for depositing InN films. In this process, seeding of the nucleation sites and subsequent growth was performed in the presence of reactive NH3. We investigated the simultaneous effect of strain and the Burstein–Moss (BM) energy shift on the optical properties of InN films using Raman and photoluminescence spectroscopy. The existence of compressive strain in all films is revealed by Raman spectroscopic analysis and is found to relax with increasing growth temperature. Asymmetric broadening of the A1(LO) phonon mode is observed with the onset of plasmon–phonon interaction for films grown at 620 °C. A large blue shift of the band gap of InN (1.2 eV) is observed as a collective result of compressive strain in films as well as a BM shift. The carrier density is calculated using the BM shift in the photoluminescence spectra. Finally, a blue shift in the band edge emission is observed further because of the presence of compressive strain in the films along with the BM effect.

For the first time, high optical quality InN films were grown on a sapphire substrate using the atmospheric chemical vapour deposition technique in the temperature range of 560–650 °C. The self-catalytic approach was adopted to overcome the nucleation barrier for depositing InN films. In this process, seedin

Strain and strain relaxation in semiconductors

Abstract

Single-crystal semiconductor layers can be grown with large coherency strains. This review covers their standard elasticity theory and methods of measuring the strain. High-quality strained layers are thermodynamically stable up to a critical thickness, and both theoretical and experimental determinations of critical thickness are considered. Above critical thickness there is a metastable regime, with thicknesses of a few tens of nanometres for a typical misfit ε0∼1%. A relaxation critical thickness is identified, above which compressive strain produces plastic relaxation so the strain in a layer is less than its misfit (tensile layers commonly experience cracking instead of plastic relaxation). Relaxing layers may have a misfit ε0∼1%, and thicknesses of a few hundred nanometres. In the high-mismatch regime, any strain severely perturbs the crystal growth; this occurs typically for misfits of 2% upwards. The review concludes with some unresolved questions about multilayer structures.

This is a preview of subscription content, access via your institution.

Access options

Buy single article

Instant access to the full article PDF.

Tax calculation will be finalised during checkout.

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

Tax calculation will be finalised during checkout.

References

G. G. STONEY, Proc. R. Soc. A 182 (1909) 172.

R. L. HARTMAN and A. R. HARTMAN, Appl. Phys. Lett. 23 (1973) 147.

M. J. LUDOWISE, W. D. DIETZE, C. R. LEWIS, M. D. CAMRAS, N. HOLONYAK, B. K. FULLER and M. A. NIXON, ibid. 42 (1983) 487.

W. D. LAIDIG, P. J. CALDWELL, Y. F. LIN and C. K. PENG, ibid. 44 (1984) 653.

M. C. JONCOUR, M. N. CHARASSE and J. BURGENT, J. Appl. Phys. 58 (1985) 3373.

N. B. PATEL, J. E. RIPPER and P. BROSSON, IEEE J. Quantum Electron. 9 (1973) 338.

P. G. ELISEEV, B. N. SVERDLOV and N. SHOKHUDZHAEV, Sov. J. Quantum Electron. 14 (1984) 1120.

A. R. ADAMS and E. P. O’REILLY, Physics World, Oct (1992) 43.

E. P. O’REILLY, Semicon. Sci. Technol. 4 (1989) 121.

C. MAILHIOT and D. L. SMITH, Critical Rev. in Solid State and Mater. Sci. 16 (1990) 131.

E. P. O’REILLY and A. R. ADAMS, IEEE J. Quantum Electron. 30 (1994) 336.

L. VEGARD, Z. Physik 5 (1921) 17.

F. BIRCH, Phys. Rev. 71 (1947) 809.

F. WINTER, Trans. Amer. Soc. Civil Eng. 125 (1960) 807.

W. D. NIX, Met. Trans. A 20 (1989) 2217.

T. B. LIGHT, M. BERKENBLIT and A. REISMAN, J. Electrochem. Soc. 115 (1968) 969.

V. T. GILLARD, W. D. NIX and L. B. FREUND, J. Appl. Phys. 76 (1994) 7280.

J. A. FLORO and E. CHASON, Appl. Phys. Lett. 69 (1996) 3830.

D. A. FAUX and J. HAIGH, J. Phys. Condensed Matter 2 (1990) 10289.

J. R. DOWNES and D. A. FAUX, J. Appl. Phys. 77 (1995) 2444.

A. H. HARKER, K. PINARD, S. C. JAIN, A. ATKINSON and R. BULLOUGH, Phil. Mag. A 71 (1995) 871.

J. MASSIES and N. GRANDJEAN, Phys. Rev. Lett. 71 (1993) 1411.

H. NAGAI, J. Appl. Phys. 45 (1974) 3789.

P. AUVRAY, M. BAUDET and A. REGRENY, J. Cryst. Growth 95 (1989) 288.

J. F. NYE, ‘‘Physical Properties of Crystals’’, 2nd Edn (Oxford University Press, Oxford, 1985).

D. J. DUNSTAN, ‘‘Properties of GaAs’’ (EMIS Datareview, INSPEC, London, 1996).

L. DE CARO and L. TAPFER, Phys. Rev. 48 (1993) 2298.

J. HORNSTRA and W. J. BARTELS, J. Cryst. Growth 44 (1978) 513.

F. MURNAGHAN, Proc. Nat. Acad. Sci. USA 30 (1944) 244.

K. BRUGGER, Phys. Rev. A 133 (1964) 1611.

Z. SKLAR, P. MUTTI, N. C. STOODLEY and G.A. D. BRIGGS, Adv. Acoust. Microsc. 1 (1995) 209.

R. N. THURSTON, J. Acoust. Soc. Amer. 41 (1967) 1093.

G. A. SAUNDERS, C. FANGGAO, L. JIAQIANG, Q. WANG, M. CANKURTARAN, E. F. LAMBSON, P. J. FORD and D. P. ALMOND, Phys. Rev. B 49 (1994) 9862.

M. T. EMENY, L. K. HOWARD, K. P. HOMEWOOD, J. D. LAMBKIN and C. R. WHITEHOUSE, J. Cryst. Growth 111 (1991) 413.

F. A. PONCE, L. GONZÁLEZ, A. MAZUELAS and F. BRIONES, Inst. Phys. Conf. Ser. 134 (1993) 313.

M. MISSOUS and S. OHAGAN, J. Appl. Phys. 75 (1994) 3396.

U. BANGERT and A. J. HARVEY, Inst. Phys. Conf. Ser. 134 (1993) 305.

F. GLAS, ibid. 134 (1993) 269.

A. PONCHET, A. ROCHER, J.-Y. EMERY, C. STARCK and L. GOLDSTEIN, J. Appl. Phys. 74 (1993) 3778.

R. W. GLEW, K. SCARROTT, A. T. R. BRIGGS, A. D. SMITH, V. A. WILKINSON, X. ZHOU and M. SILVER, J. Cryst. Growth 145 (1994) 764.

A. G. CULLIS, D. J. ROBBINS, A. J. PIDDUCK and P. W. SMITH, ibid. 123 (1992) 333.

D. E. JESSON, S. J. PENNYCOCK, J.-M. BARIBEAU and D. C. HOUGHTON, Phys. Rev. Lett. 71 (1993) 1744.

T. S. KUAN and S. S. IYER, Appl. Phys. Lett. 59 (1991) 2242.

W. P. GILLIN and D. J. DUNSTAN, Phys. Rev. B 50 (1994) 7495.

N. E. B. COWERN, P. C. ZALM, P. VAN DER SLUIS, D. J. GRAVESTEIJN and W. B. DEBOER, Phys. Rev. Lett. 72 (1994) 2585.

C. R. WHITEHOUSE, S. J. BARNETT, B. F. USHER, A. G. CULLIS, A. M. KEIR, A. D. JOHNSON, G. F. CLARK, B. K. TANNER, W. SPIRKL, B. LUNN, W. HAGSTON and C. HOGG, Inst. Phys. Conf. Ser. 134 (1993) 563.

D. H. RICH, T. GEORGE, J. MASERJIAN, F. J. GRUNTHANER and A. LARSSON, J. Appl. Phys. 72 (1992) 5834.

H. MOHR, Appl. Phys. Lett. 69 (1996) 4090.

P. F. FEWSTER, J. Appl. Cryst. 22 (1989) 64.

P. KIDD, P. F. FEWSTER and N. L. ANDREW, J. Phys. D 28, (1995) A133.

G. MACPHERSON, P. J. GOODHEW and R. BEANLAND, Phil. Mag. A 72 (1994) 1531.

M. A. G. HALLIWELL, Adv. Xray Analysis 33 (1990) 61.

R. BEANLAND, J. Cryst. Growth 130 (1993) 394.

Y. H. LO, R. BHAT, D. M. HWANG, M. A. KOZA and T. P. LEE, Appl. Phys. Lett. 58 (1991) 1961.

F. C. FRANK and J. H. VAN DER MERWE, Proc. R. Soc. A 198 (1949) 216.

W. A. JESSER and J. H. VAN DER MERWE, in ‘‘Dislocations in Solids’’, edited by F. R. N. Nabarro (Elsevier, Amsterdam, 1989) Ch. 41.

J. W. MATTHEWS, Phil. Mag. 13 (1966) 1207.

W. A. JESSER and J. W. MATTHEWS, Phil. Mag. 15 (1967) 1097.

A. H. COTTRELL, Dislocations and Plastic Flow in Crystals, (Oxford Clarendon Press) 1953, p. 53

J. W. MATTHEWS and J. L. CRAWFORD, Thin Solid Films 5 (1970) 187.

E. A. FITZGERALD, Mater. Sci. Reports 7 (1991) 87.

T. G. ANDERSSON, Z. G. CHEN, V. D. KULAKOVSKII, A. UDDIN and J. T. VALIN, Appl. Phys. Lett. 51 (1987) 752.

R. PEOPLE and J. C. BEAN, ibid. 49 (1985) 322.

S. M. HU, J. Appl. Phys. 69 (1991) 7901.

D. J. DUNSTAN, S. YOUNG and R. H. DIXON, ibid. 70 (1991) 3038.

A. STRAWBRIDGE and H. E. EVANS, Engng Failure Analysis 2 (1995) 85.

A. G. KIMBER and J. G. KEER, J. Mater. Sci. Lett. 1 (1982) 353.

D. J. DUNSTAN, P. KIDD, L. K. HOWARD and R. H. DIXON, Appl. Phys. Lett. 59 (1991) 3390.

D. J. DUNSTAN, P. KIDD, P. F. FEWSTER, N.L. ANDREW, R. GREY, J. P. R. DAVID, L. GONZÁLEZ, Y. GONZÁLEZ, A. SACEDÓN and F. GONZÁLEZ-SANZ, ibid. 65 (1994) 839.

A. SACEDÓN, F. GONZÁLEZ-SANZ, E. CALLEJA, E. MUÑOZ, S.I. MOLINA, F. J. PACHECO, D. ARAÚJO, R. GARCIA, M. LOURENÇO, Z. YANG, P. KIDD and D. J. DUNSTAN, ibid. 66 (1995) 3334.

L. B. FREUND, J. Mech. Phys. Solids 38 (1990) 657.

J. R. WILLIS, S. C. JAIN and R. BULLOUGH, Phil. Mag. A 62 (1990) 115.

A. ATKINSON and S. C. JAIN, J. Appl. Phys. 72 (1992) 2242.

T. J. GOSLING, R. BULLOUGH, S. C. JAIN and J. R. WILLIS, ibid. 73 (1993) 8267.

U. JAIN, S. C. JAIN, A. ATKINSON, J. NIJS, R. P. MERTENS and R. VAN OVERSTRAETEN, J. Appl. Phys. 73 (1993) 1773.

A. ATKINSON and S. C. JAIN, J. Phys. Condens. Matter 5 (1993) 4595.

K. SHINTANI and K. FUJITA, J. Appl. Phys. 75 (1994) 7842.

A. K. HEAD, Proc. Phys. Soc. B 66 (1953) 793.

M. E. TWIGG, J. Appl. Phys. 68 (1990) 5109.

J. R. DOWNES, D. J. DUNSTAN and D. A. FAUX, Semicon. Sci. Technol. 9 (1994) 1265.

Idem, in ‘‘Semiconductor Heteroepitaxy’’, edited by B. Gil and R. L. Aulombard (World Scientific, Singapore, 1995), p. 594.

F. JANSEN, in ‘‘Properties of Amorphous Silicon’’ (INSPEC, IEE, London, 1989) p. 473.

D. A. FAUX, G. JONES and E. P. O’REILLY, Modelling Simul. Sci. Engng 2 (1994) 9.

P. BEAUCHAMP and J. LÉPINOUX, Phil. Mag. A7 4 (1996) 919.

P. A. ASHU, J. H. JEFFERSON, A. G. CULLIS, W. E. HAGSTON and C. R. WHITEHOUSE, J. Cryst. Growth 150 (1995) 176.

G. A. VAWTER and D. R. MYERS, J. Appl. Phys. 65 (1989) 4769.

E. A. FITZGERALD, Y. H. HIE, D. MONROE, P. J. SILVERMAN, J. M. KUO, A. R. KORTON, F. A. THIEL and B. E. WEIR, J. Vac. Sci. Technol. B 10 (1992) 1807.

J. TERSOFF, Appl. Phys. Lett. 62 (1993) 693.

L. AIGOUY, Thesis, University of Montpellier II (1995).

I. J. FRITZ, Appl. Phys. Lett. 51 (1987) 1080.

P. THIJS, Private communication.

J. P. HIRTH and X. FENG, J. Appl. Phys. 67 (1990) 3343.

X. FENG and J. P. HIRTH, ibid. 72 (1992) 1386.

T. E. MITCHELL and O. UNAL, J. Electron. Mater. 20 (1991) 723.

T. ANAN, K. NISHI and S. SUGOU, Appl. Phys. Lett. 60 (1992) 3159.

F. CALLE, A. SACEDÓN, A. L. ALVAREZ, E. CALLEJA, E. MUÑO, H. G. COLSON and P. KIDD, Microelectron. J. 26 (1995) 821.

R. BEANLAND, H. G. COLSON, and A. SACEDÓN, (1996) unpublished data.

H. G. COLSON and D. J. DUNSTAN, J. Appl. Phys. (1997) 2898.

A. ROCKETT and C. J. KIELY, J. Vac. Sci. Technol. A 9 (1991) 880.

X. ZHOU, P. CHARSLEY and U. BANGERT, Inst. Phys. Conf. Ser. 134 (1993) 489.

R. H. DIXON and P. J. GOODHEW, J. Appl. Phys. 68 (1990) 3163.

F. R. N. NABARRO, Phil. Mag. A 75 (1997) 703.

J. W. MATTHEWS, S. MADER and T. B. LIGHT, J. Appl. Phys. 41 (1970) 3800.

D. C. HOUGHTON, ibid. 70 (1991) 2136.

W. A. JESSER and J. KUI, Mater. Sci. Engng A 164 (1993) 101.

R. HULL, J. C. BEAN, D. BAHNCK, L. J. PETICOLAS, K. T. SHORT and F. C. UNTERWALD, J. Appl. Phys. 70 (1991) 2052.

C. G. TUPPEN and C. J. GIBBINGS, ibid. 68 (1990) 1526.

D. C. HOUGHTON, Appl. Phys. Lett. 57 (1990) 2124.

J. P. HIRTH and J. LOTHE, ‘‘Theory of Dislocations’’ (McGraw-Hill, New York, 1968).

P. M. MOONEY, Mater. Sci. Engng R 17 (1996) 105.

J. ZOU, D. J. H. COCKAYNE and B. F. USHER, Appl. Phys. Lett. 68 (1996) 673.

B. W. DODSON and J. Y. TSAO, ibid. 51 (1987) 1325; 52 (1988) 852.

H. ALEXANDER and P. HAASEN, Solidstate Phys. 22 (1968) 27.

E. KASPAR, H. J. HERZOG and H. KIBBEL, Appl. Phys. 8 (1975) 199.

G. J. WHALEY and P. I. COHEN, Appl. Phys. Lett. 57 (1990) 144.

R. J. HAUENSTEIN, B. M. CLEMENS, R. H. MILES, O. J. MARSH, E. T. CROKE and T. C. McGILL, J. Vac. Sci. Technol. B 7 (1989) 767.

H. M. HOPGOOD, S. MCGUIGAN, J. A. SPITZNAGEL and R. N. THOMAS, Appl. Phys. Lett. 48 (1986) 1654.

A. V. DRIGO, A. AYDINLI, A. CARNERA, F. GENOVA, C. RIGO, C. FERRARI, P. FRANZOSI and G. SALVIATI, J. Appl. Phys. 66 (1989) 1975.

R. BEANLAND, D. J. DUNSTAN and P. J. GOODHEW, Scanning Microscopy 8 (1994) 859.

D. J. DUNSTAN, P. KIDD, R. BEANLAND, A. SACEDÓN, E. CALLEJA, L. GONZÁLEZ, Y. GONZÁLEZ and F. J. PACHECO, Mater. Sci. Technol. 12 (1996) 181.

P. J. DUGDALE, S. J. BARNETT, R. C. POND and M. EMENY, Inst. Phys. Conf. Ser. 134 (1993) 589.

P. MAIGNÉ et al., Appl. Phys. Lett. 60 (1994) 1543.

T. REISINGER, M. J. KASTNER, K. WOLF, E. STEINKIRCHNER, W. HÄCKL, H. STANZL and W. GEBHARDT, Mater. Sci. Forum 182/184 (1995) 147.

I. YONENAGA and K. SUMINO, J. Appl. Phys. 65 (1989) 85; 74 (1993) 917.

P. MAIGNÉ and D. COULAS, J. Cryst. Growth 170 (1997) 743.

J. W. MATTHEWS and E. KLOKHOLM, Mater. Res. Bull. 7 (1972) 213.

A. A. GRIFFITHS, Phil. Trans. R. Soc. A 221 (1920) 163.

L. GONZÁLEZ, Y. GONZÁLEZ and F. BRIONES, Private communication.

R. T. MURRAY, C. J. KIELY and M. HOPKINSON, Phil. Mag. A 74 (1996) 383.

L. R. DAWSON, J. Cryst. Growth 98 (1989) 220.

E. A. FITZGERALD, J. Vac. Sci. Technol. B 7 (1989) 87.

E. A. FITZGERALD, G. P. WATSON, R. E. PROANO, D. G. AST, P. D. KIRCHNER, G. D. PETTIT and J. M. WOODALL, J. Appl. Phys. 65 (1989) 2220.

R. BEANLAND, ibid. 72 (1992) 4031.

Idem, ibid. 77 (1995) 6217.

M. LOUREÇO, K. P. HOMEWOOD and L. CONSIDINE, Mater. Sci. Engng B 28 (1994) 507.

W. P. GILLIN, S. S. RAO, I. V. BRADLEY, K. P. HOMEWOOD, A. D. SMITH and A. T. R. BRIGGS, Appl. Phys. Lett. 63 (1993) 797.

Y. CHEN, X. W. LIN, Z. LILIENTAL-WEBER, J. WASHBURN, J. F. KLEM and J. Y. TSAO, ibid. 68 (1996) 111.

A. G. CULLIS, M. T. EMENY and A. J. PIDDUCK, Phys. Rev. Lett. 75 (1995) 2368.

K. DUROSE and H. TATSUOKA, Inst. Phys. Conf. Ser. 134 (1993) 581.

A. E. ROMANOV, W. POMPE, G. E. BELTZ and J. S. SPECK, Appl. Phys. Lett. 69 (1996) 3342.

J. S. SPECK, M. A. BREWER, G. E. BELTZ, A. E. ROMANOV and W. POMPE, J. Appl. Phys. 80 (1996) 3808.

D. J. DUNSTAN, Phil. Mag. A 73 (1996) 1323.

R. GREY, J. P. R. DAVID, P. A. CLAXTON, F. GONZALEZ-SANZ and J. WOODHEAD, J. Appl. Phys. 66 (1989) 975.

J. P. R. DAVID, R. GREY, M. A. PATE, P. A. CLAXTON and J. WOODHEAD, J. Electron. Mater. 20 (1991) 295.

H. G. COLSON, P. KIDD, D. J. DUNSTAN, S. P. EDIRISINGHE, A. E. STATON-BEVAN, R. GREY, J. P. R. DAVID and G. J. REES, in ‘‘Semiconductor Heteroepitaxy’’, edited by B. Gil and R. L. Aulombard (World Scientific, Singapore, 1995) pp. 602605.

P. KIDD, D. J. DUNSTAN, R. GREY, J. P. R. DAVID, P. F. FEWSTER, N. L. ANDREW, S. I. MOLINA and C. J. KIELY, Inst. Phys. Conf. Ser. 134 (1993) 321.

J. J. COLEMAN, in ‘‘Quantum Well Lasers’’, edited by P. S. Zory (Academic Press, London, 1993) p. 367.

M. E. BRENCHLEY, D. J. DUNSTAN, P. KIDD and A. KELLY, Mater. Res. Soc. Symp. Proc. 434 (1996) 147.

M. E. BRENCHLEY, M. HOPKINSON, A. KELLY, P. KIDD and D. J. DUNSTAN, Phys. Rev. Lett. 78 (1997) 3912.

J. M. HINCKLEY and J. SINGH, Phys. Rev. B 42 (1990) 3546.

R. BEANLAND, D. J. DUNSTAN and P. J. GOODHEW, Adv. Phys. 45 (1996) 87.

M. RAZEGHI, M. DEFOUR, R. BLONDEAU, F. OMNES, P. MAUREL, O. ACHER, F. BRILLOUET, J. C. C-FAN and J. SALERNO, Appl. Phys. Lett. 53 (1988) 2389.

K. MOBARHAN, C. JELEN, E. KOLEV and M. RAZEGHI, J. Appl. Phys. 74 (1993) 743.

M. SUGO, H. MORI, M. TACHIKAWA, Y. ITOH and M. YAMAMOTO, Appl. Phys. Lett. 57 (1990) 593.

J. D. LAMBKIN, Private communication.

R. W. CAHN, Phil. Trans. R. Soc. A 351 (1995) 497.

A. KELLY, Ceram. Trans. 57 (1995) 117; ibid. 164 (1996) 428.

D. J. DUNSTAN, in ‘‘Semiconductor Heteroepitaxy’’, edited by B. Gil and R. L. Aulombard (World Scientific, Singapore, 1995) p. 564.

M. McLEAN, Phil. Trans. Roy. Soc. A 351 (1995) 419.

S. D. DAHLGREN, Met. Trans. A 8 (1977) 347.

E. O. HALL, Proc. Phys. Soc. B 64 (1951) 747.

B. A. MOVCHAN, Mater. Sci. Engng A 138 (1991) 109.

J. TERSOFF and F. K. LEGOUES, Phys. Rev. Lett. 72 (1994) 4056.

K. W. SCHWARZ and J. TERSOFF, Appl. Phys. Lett. 69 (1996) 1220.

H. G. COLSON, A. C. KIMBER and D. J. DUNSTAN, unpublished data.

A. SACEDÓN, E. CALLEJA and E. MUNÓZ, unpublished data.

Single-crystal semiconductor layers can be grown with large coherency strains. This review covers their standard elasticity theory and methods of measuring